

HYPOTENSION IS DANGEROUS

C. RYAN KEAY, MD, FACEP 16 MARCH 2018

OBJECTIVES

- Case-based overview of pressors
- Debunking pressor myths
- Utilizing push-dose pressors

82-year old male, SOB, feeling unwell, generally weak.

T 38.2, RR 20 – 88% on RA, P 120, BP 75/45 Slightly depressed mentation Tachycardic, no murmurs Tachypneic, rales Abdomen soft and nontender Extremities with trace pedal edema Skin warm to touch, dry

NEXT STEPS IN ASSESSMENT?

Past Medical History CHF, COPD, hypertension, hyperlipidemia

Medications Lisinopril, Metoprolol, Lasix, ASA, Albuterol

NEXT STEPS IN ASSESSMENT?

Adjunctive information to vitals?

ETCO2

TREATMENTS?

T 38.2, RR 20 – 88% on RA, P 120, BP 75/45, ETCO2 22

Fluid bolus – how much?

Severe Sepsis and Septic Shock guidelines = 30mL/kg

 You administer high flow oxygen, transitioning to CPAP for respiratory support

• ETCO2 is now 20

 Patient initially responds to a fluid bolus with a blood pressure of 100/79, then becomes hypotensive again.

TREATMENTS?

Fluid bolus - done

Pressors

Which one?

WHAT IS YOUR RESUSCITATION GOAL?

End Organ Perfusion

HOW TO MEASURE END ORGAN PERFUSION?

MAP:

- Mean Arterial Pressure: Systolic diastolic
- Linear relationship between MAP and blood flow to vital organs
- Goal in Sepsis = 65mmHg

What if my patient has chronic hypertension? What is the right MAP?

MAP IN SEPSIS

HOW TO MEASURE END ORGAN PERFUSION?

Getting back to our poor patient...

BP 88/40, increasingly tired appearing Becoming obtunded Poor skin color

You startwhat pressor?

VASOPRESSORS

Which one is best for my patient?

Cochrane Review 2016

Except for increased arrhythmia risk with dopamine, there is **no significant difference** in mortality between vasopressors and "evidence of any other differences between any of the six vasopressors examined is insufficient"

VASOPRESSORS VS INOTROPES

Vasopressors:

the goal is to **increase afterload** via vasoconstriction and increased arterial pressure

Inotropes:

increase cardiac contractility, thereby improving stroke volume and cardiac output

AFTERLOAD

Afterload

Refers to the amount of resistance the heart must pump against when ejecting blood

UNIVERSITY of MARYLAND SCHOOL OF PHARMACY

AFTERLOAD AND CONTRACTILITY

increased afterload = reduced contraction

Ostudy.com

CONTRACTILITY

BEST USE FOR VASOPRESSORS

Vasopressors are best for hypotension due to distributive or obstructive shock

sepsis, anaphylaxis, PE, tamponade

<u>WHY?</u>

Pressors increase afterload

Cardiac disease + increased afterload = <u>decreased cardiac output</u>

BEST USE FOR INOTROPES

Inotropes are usually preferred when there is suspicion for poor cardiac function

Examples:

- 1. cardiogenic shock
- 2. septic shock in the setting of CHF

INOPRESSORS

Most medications used in emergency medicine = "inopressors"

35-year old male, helmeted motorcycle collision. AMS with GCS 8, deteriorating on scene. Multiple superficial abrasions, flail chest evidence by paradoxical motion, tachypneic.

T 35.6, P 140, BP 100/40, RR 40

Walk through your assessment & interventions Primary survey ABCs Life threatening injuries

> Secondary survey C-collar and BB DCAP-BTLS

SBP drops to 80/50, HR 120

Treatments

- Fluids??
- Pressors??

- You give LR 2 liters
 - Persistent hypotension
- Partner asks about sedation patient moving arms as if to grab for tube
 - No lower extremity movement noted

How are you going to reassess the patient?

- How are you going to treat the persistent hypotension?
- What is your treatment goal in this case?

INOPRESSOR COMPARISON

Pressor	Mechanism	Risk	Indication
Norepinephrine	a1a2(β1)	Safest, myotoxicity, arrhythmia, ischemia	1 st line for sepsis, neurogenic, cardiogenic
Epinephrine	β1β2(α1)	Tachy, lactic acidosis	1 st line: anaphylaxis 2 nd line: sepsis
Dopamine	dopaβlal	Dysrhythmia, incr mortality	Refractory shock
Vasopressin	vasopressin R	Digital ischemia	2nd line: sepsis Pure pressor
Phenylephrine	pure a1	Reflex brady, ischemia	Adjunct to norepi Pure pressor

DEEPER DIVE ON NOREPINEPHRINE

- Stimulates a-1 and a-2 receptors
 - Small amount of β-1 agonism (inotropic)

Balanced venous and arterial vasoconstrictor

- Arteries: increased coronary blood flow and afterload
- Veins: increased physiologic venous reserve
 = increased preload

DEEPER DIVE ON NOREPINEPHRINE

- Number needed to treat = 9, compared with dopamine
- Compared to epinephrine, phenylephrine, vasopressin, it is superior in improving:
 - central venous pressure
 - urinary output
 - arterial lactate

WORD OF CAUTION ON NOREPI

- Norepinephrine demonstrates
 - NO mortality benefit
 - NO improvement in hemodynamic endpoints
 - May NOT improve end-organ flow
- Risks of norepinephrine include
 - Cardiac myocyte toxicity
 - Cardiac arrhythmias
 - Arterial vasoconstriction to digits = ischemia

CASE 2 - TREATMENT

- You reassess patient:
 - No abdominal distension
 - No obvious hemorrhage
 - Equal bilateral breath sounds
- You now suspect spinal injury/neurogenic shock
- Start norepinephrine at 8mcg/min with improvement in blood pressure

26-year old female with SOB, throat tightening, nausea and vomiting. Multiple food/med allergies, unknown exposure.

P120 BP120/50 RR 16 – SpO2 95% RA Anxious appearing Lungs with scattered wheezes Tachycardic, no murmur Nontender abdomen

Differential?

Treatment?

CASE 3 - TREATMENT

Patient becomes increasingly anxious.

Treatment

- Benadryl 25-50mg IV
- Duoneb
- Solumedrol

BP 70/40 P 140 RR 40

Treatment

- Epi 1:1000
- How many IM epi dosages before we move to an epi infusion?

EPINEPHRINE

- Stimulates β -1 and β -2 receptors
 - > inotropic effects than norepinephrine
 - Due to its β-agonism, epinephrine greatly increases heart rate and stroke volume, with a small amount of bronchodilation.
 - Moderate stimulatory effect on a-1 receptors
- Causes tachycardia and lactic acidosis
 - "dirty epi drip"
 - Push-dose pressors...

INOPRESSOR COMPARISON

Pressor	Mechanism	Risk	Indication
Norepinephrine	α1α2(β1)	Safest, myotoxicity,	1 st line for sepsis, neurogenic,
		ischemia	cardiogenic
Epinephrine	β1β2(α1)	Tachy, lactic acidosis	1 st line: anaphylaxis 2 nd line: sepsis
Dopamine	dopa ßlal	Dysrhythmia, incr	Refrectory shock
		mortality	
Vasopressin	vasopressin R	Digital ischemia	2nd line: sepsis Pure pressor
Phenylephrine	pure al	Reflex brady, ischemia	Adjunct to norepi Pure pressor

55-year old male with a history of CHF/COPD and fever.

P120, BP 105/40, RR 30, SpO2 75% on RA Anxious, tachypneic Rales bilaterally Tachycardic, no murmur

Initially responds to CPAP with oxygen saturations improved to 95%.

Patient fatiguing

You consider emergent intubation...but what about his blood pressure?

PUSH DOSE PRESSORS?!

Used by anesthesiologists for decades to reverse transient hypotension.

Safe, effective

Mostly ephedrine, phenylephrine

Epinephrine now more widespread and acceptable.

PROS OF PUSH DOSE EPI

- Good for short-term pressor needs, transient hypotension, or as a bridge to fluid resuscitation or vasopressor drips.
- Best for 10-15 minute situations, long transport – need a pressor drip.

PROS OF PUSH DOSE EPI

- Easy to mix from readily available 1:10,000 epinephrine and normal saline. The dosing is relatively straightforward.
- May need more than one syringe mixed up.

EMCRIT

EPINEPHRINE

Has alpha and beta1/2 effects so it is an inopressor Do not give cardiac arrest doses (1 mg) to patients with a pulse

Mixing Instructions:

- Take a 10 ml syringe with 9 ml of normal saline
- Into this syringe, draw up 1 ml of epinephrine from the cardiac amp (Cardiac amp contains Epinephrine 100 mcg/ml)
- Now you have 10 mls of Epinephrine 10 mcg/ml

Onset-1 minute Duration-5-10 minutes Dose-0.5-2 ml every 2-5 minutes (5-20 mcg)

DOSING OF PUSH DOSE EPI

Slow IV push for hypotension or bradycardia

• 2-10mcg per minute

- Cardiogenic shock 0.1-0.5 mcg/kg/minute (10-50mgc per minute for 100kg patient.
- Severe anaphylaxis 100-250mcg IV every 3-5 minutes followed by continuous IV infusion.

- 65-year old hypertensive, diabetic with cardiac arrest
- Epinephrine x3, Shock x4, Amio
- Obtain ROSC
 - VS: BP 80/40, P 100, RR bagged 12 bpm, FiO2 100%

- Do you need to treat post-ROSC hypotension?
- Do you start with fluids?
- What pressors are best?

WHAT IS YOUR RESUSCITATION GOAL?

End Organ Perfusion

POST-ROSC HYPOTENSION

- Need to balance the metabolic needs of an ischemic brain with overstressing a decompensated heart.
- 1st volume pressures
 - Particulalry in volume-dependent disease (Inferior MI)
 - Start vasoactive drugs when hypotensive after a rapid infusion of 2 L of crystalloid.

• 2nd - Pressors

POST-ROSC HYPOTENSION

- Inotropes and vasopressors can mitigate the myocardial dysfunction after cardiac arrest.
- No evidence demonstrating superiority of any vasopressor after cardiac arrest
- Septic patients: No difference in dopamine and norepinephrine with regard to mortality
- Dopamine = arrhythmogenic

Norepinephrine is the first line inopressor for an undifferentiated post-arrest patient

SUMMARY

Pressor	Mechanism	Risk	Indication
Norepinephrine	a1a2(β1)	Safest, myotoxicity, arrhythmia, ischemia	1 st line for sepsis, neurogenic, cardiogenic
Epinephrine	β1β2(α1)	Tachy, lactic acidosis	1 st line: anaphylaxis 2 nd line: sepsis
Dopamine	dopaβlal	Dysrhythmia, incr mortality	Refractory shock
Vasopressin	vasopressin R	Digital ischemia	2nd line: sepsis Pure pressor
Phenylephrine	pure a1	Reflex brady, ischemia	Adjunct to norepi Pure pressor

SUMMARY

- Most drugs used in EMS and Emergency Medicine are truly inopressors (alpha and beta effects)
- Norepinephrine (Levophed) is our first line inopressor for most situations
- Dopamine actually demostrates INCREASED
 mortality in studies
- Epinephrine is first line for anaphylaxis

SUMMARY

- Dirty epi drips are effective and safe
- Push-dose epinephrine is a useful tool for preventing peri-intubation cardiac arrest in hypotensive or borderline hypotensive patients.
- Post-arrest patients should get fluids, then norepinephrine for hypotension

THANK YOU!

Questions?

