

Pediatric Pearls A to B

Brian Rogge, RN, EMT-P

Life Flight Network

A

Pediatric Airway

Challenges of the Pediatric Airway

- Age related dosing and equipment
- Anatomical variations based on age
- Anxiety of a sick child
- Fear in the care giver
- Anxiety of parents

Pediatric Airway Anatomy

Pediatric Airway Anatomy

Tongue

- Potential site of airway obstruction
 - Difficult ventilation
 - Loss of tone with sleep, sedation or CNS dysfunction
 - Posterior displacement of the tongue may cause severe airway obstruction

Occiput

- A child's head/occiput are proportionately larger than an adult's
- Neck flexion while supine
 - Leads to obstruction
- Overcome with the sniffing position
 - Roll placed under back (infant) for BVM
 - None small child
 - Roll placed under occiput in older children

Sniffing Position

Nasal Passage

Increased mucosa and lymphoid tissue

- Nasal airway is primary pathway for normal breathing in the infant
 - Warming, humidification, particle filtration

 Compromised breathing with increased secretions, NGT placement, nasal congestion

Larynx

- Newborns
 - Larynx at the base of the occiput/C1 to C4
- Enables epiglottis to lock the larynx into the nasopharynx by passing up behind the soft palate
- Provides a direct air channel from the nares to the lungs, allowing liquids to pass on the sides into the esophagus

Larynx

- Two separate anatomic pathways
 - Respiratory tract from the nose to the lungs
 - Digestive tract from the mouth to the stomach
- Large Tongue
 - Entirely within the oral cavity
- High Glottis
- Difficult line of vision from mouth to the larynx during laryngoscopy
 - Anterior Airway

Anatomic Changes in Childhood

Occurs after the second year of life

 Posterior 1/3 of tongue descends into the neck, forming upper anterior pharyngeal wall

By 7 years, the larynx lies between C3 and C6

In adulthood, the larynx lies between C4 – C7

Anatomy

 In adults, the vocal cords and trachea are of equal dimensions

- In newborns, the narrowest portion of the airway is the cricoid ring
 - Tight ET tubes may lead to cricoid damage, subglottic stenosis (more on this later)

Preoxygenate

- 5 minutes of 100% oxygen or 8 deep breaths over 60 seconds
 - Time before sats < 90%</p>
 - 70 kg pt -- 8 minutes
 - 120 kg pt -- 3 minutes
 - 10 kg child -- 4 minutes
- Time for sats $90\% \rightarrow 0\%$
 - 70 kg pt -- 120 seconds
 - 10 kg child -- 45 seconds

Airway Equipment

- Suction Device
- Oxygen source
- Bag Valve Mask
- ET Tube
 - 1 size smaller and larger
- Laryngoscope blade & Handle

- ETCO₂ Detector
- Tube Holder
- Alternate Airway
 Equipment
 - OPA, Combitube, King airway, LMA, cric. kit
- RSI Medications

Equipment Sizes

- ET Tube
 - Diameter = (age/4) + 4
 - Width of child's 5th finger
 - Depth = Tube Size x 3

- Laryngoscope Blade
 - Based on Length base (Broselow) Tape

Laryngoscope use

- Use the correct size blade
 - Miller 0 premature infant or small newborn
 - Miller 1 normal newborn to 12 kg (2 years)
 - Miller 2 13 to 24 kg (7 years)
 - Miller 3 25 kg + (8 years +)
 - Macintosh may be used after 2 years of age
- Too small a blade can get you into trouble
- Don't insert blindly. Watch the tip of the blade go where you want it.
- If the epiglottis is large and floppy, consider using the Mac blade like a Miller (lift the epiglottis)

Laryngoscope use

- Spend an extra 3-5 seconds sweeping the tongue completely out of the way.
- If you don't do this, the laryngoscope displaces the tongue posteriorly, and it occludes the view

ET Tube Dogma

- Because of the funnel shaped larynx:
 - Tight fitting ETT may cause edema and trouble upon extubation
- Uncuffed ETT preferred for patients < 8 years old

What PALS says

 Cuffed tubes may be preferred in certain circumstances ...poor lung compliance, high airway resistance, or large glottic air leak really any sick kid

Comparison of cuffed and uncuffed endotracheal tubes in young children

- Weiss M, et al: Br J Anesthes 2009; 103 (6): 867-873
 - 2246 children RCT (1119/1127 cuffed/uncuffed)
 - Post-extubation stridor was noted in 4.4% of patients with cuffed and in 4.7% with uncuffed tubes

Cuffed vs. uncuffed endotracheal tubes

- Using the standard formula for tube size (age/4) + 4, uncuffed tubes were incorrectly sized in 23% of cases.
- In another study, tube changes due to significant air leaks occurred in 28-30% of patients with uncuffed tubes.
- These problems did not occur with cuffed tubes.

PALS: Sizing Cuffed vs. uncuffed endotracheal tubes

Uncuffed

- < 1 year old: 3.5 mm ET tube</p>
- 1-2 year old: 4.0 mm ET tube
- > age 2: (yrs/4) + 4 = mm ET tube

Cuffed

- < 1 year old: 3.0 mm ET tube</pre>
- 1-2 year old: 3.5 mm ET tube
- > age 2: (yrs/4) + 3.5 = mm ET tube

PALS: Sizing Cuffed vs. uncuffed endotracheal tubes

Bottom line:

- Use a length-based resuscitation tape (e.g. Broselow)
- If cuffed tubes are not listed, use the uncuffed size minus 0.5 mm.

Post Intubation Management

- Verification of Tube Placement
 - Visualization
 - -ETC0₂
 - Auscultation
- Secure the tube with tape or commercial device
 - Head/neck immobilization in small children to avoid neck movement and dislodgement

Other Airways

- Combitube[®]
 - Small Adult is smallest size
 - Must be 4 foot tall.
- King airway
 - Small Pediatric sizes available now
- i-Gels
 - 4 pediatric sizes
 - Smallest is 2-5kg

King Airway

Tube Size	Pediatric				Adult		
	Size o	Size 1	Size 2	Size 2.5	Size 3	Size 4	Size 5
Connector Color	Transparent	White	Green	Orange	Yellow	Red	Purple
Patient Criteria	<5 kg	5-12 kg	12-25 kg 90-115 cm	25-35 kg 105-130 cm	4-5 feet (122-155 cm)	5-6 feet (155-180 cm)	greater than 6 feet (>180 cm)
Recommended Cuff Volume	10 ml	20 ml	35 ml	40-45 ml	50-60 ml	70-80 ml	80-90 ml
Maximum Cuff Pressure	60 cm H ₂ O						
External Diameter of the Tube	9 mm	9 mm	14 mm	14 mm	17.6 mm	17.6 mm	17.6 mm
Bronchoscopy Via Ventilation Lumen	< 3.0 mm	< 3.0 mm	< 4.0 mm	< 4.0 mm	< 6.0 mm	< 6.0 mm	< 6.0 mm
Suction Catheter	10 Fr	10 Fr	16 Fr	16 Fr	18 Fr	18 Fr	18 Fr

В

Pediatric Breathing (and ventilation)

Hypoxia

- Hypoxia in Children
 - First sign: Anxiety/ Fear/ Irritable
 - Second sign: Lack of engagement
 - Third sign: Bradycardia
 - Fourth sign: Loss of consciousness
 - Develops quickly in children
 - Higher metabolic rate increases consumption
 - Minimal reserve capacity

Signs of Respiratory Distress

- Rapid breathing
- Grunting
- Inability to lie down
- Agitation
- Accessory muscle usage
- Retractions
- Tachycardia
- Apnea

Basic Airway

- Positioning
 - Jaw thrust vs. Chin lift
 - Oral airway
 - Sizing
 - Insertion techniques
 - Contraindications
 - Nasal airway
 - Sizing
 - Insertion techniques
 - Contraindications

Bag Valve Mask Ventilation

- Must fit over the nose, cheeks, mouth, and chin
- Place in sniffing position
 - In line stabilization
 - Jaw thrust
- OPA from corner of mouth to angle of jaw
- NPA from nares to tragus of ear
- Inspect for foreign body

Bag Valve Mask Ventilation

- Pediatric/Adult Size bag chest rise
 - Pop off valve 35-45 cm of water
- A skill that needs practice!
- 1 or 2 person ventilation

Reasons to Intubate

Failure to Oxygenate – low SpO₂

Failure to Ventilate – high CO₂

Expected Clinical Course

Primum non nocere....

- You can cause harm or death with intubation and a ventilator.
 - Doesn't mean you shouldn't use the tools
 - Why you are here today
 - Practice doesn't make perfect, but it helps

Rate Matters

- Look at the patient before you intubate
 - Rate
 - Effort
 - Why are they in tachypneic
 - Hint: it may have nothing to do with airway or lungs.
- Minute Ventilation (?)
- Disease Process
- Metabolic demands

I:E Ratio

Inspiratory Rate can be too fast

Expiratory phase can be too short

Anatomy versus disease process

Ventilation strategy

These are for healthy Lungs, normal metabolic demands

```
- < 1 \text{ year} Rate = 25 - 30
```

$$-1-5$$
 years Rate = $20-25$

$$-5 - 12$$
 years Rate = $15 - 20$

$$->12$$
 years Rate = $12 - 15$

Ventilation strategy

- Tidal Volume should be appropriate
 - Be aware of Peak inspiratory pressure, but not afraid of it.
 - Ok if needed up to 25-30 cm/ H_2O
 - Healthy lungs 16-20 cm/H₂0
- Remember PEEP. Start with 5 cm/H₂O
 - If you are bagging place a peep valve
 - Asthma patients are the exception that may do better without peep.

Asthma Patients

- Very high threshold to intubate
- Peep may not be beneficial
- Lower Respiratory Rates
- Very long expiratory phase
- May require high peak inspiratory Pressures
- Measure Pplat

Asthma Patients

- The recommended method to monitor patients for hyperinflation and injurious airway pressures is Pplat, the average end-inspiratory alveolar pressure.
- Pplat is measured using an end-inspiratory pause.
 Values > 30 cm H₂O indicate hyperinflation and excessive airway pressures.
- Of note, peak airway pressure (Ppeak)
 measurements do not correlate with patient
 outcomes and therefore are not useful for
 assessing hyperinflation.
 - Ventilator Management of the Intubated Patient With Asthma, Michael E. Winters, MD December 13, 2010

Slide Title

Thank You